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A pulse method is described by which thermophysical characteristics of solid 
materials can be determined in the case of an imperfect thermal contact between 
layers of the test specimen and the reference specimen. 

The main source of errors in the determination of the thermophysical characteristics of 
materials by comparative methods involving contacts are thermal resistances in the interface 
region along the boundary between the tested material and the reference standard. In order 
to decrease these errors, one usually endeavors to minimize the effect of contact resistances 
by careful treatment of the adjoining surfaces, by increasing the pressure in the contact 
region, by introduction of a high-conductivity material into the interface region, etc. 
[1-3]. However, all these measures do not always yield the desired results. This has been 
confirmed by estimates of the effect of thermal resistances in contacts on the experimental 
data obtained with thin specimens or with high-conductivity materials [4-5]. There was a 
method proposed [6] by which the thermal resistances in contacts could be eliminated in the 
determination of the thermophysical characteristics of high-conductivity materials. That 
method is an extension of the method of two temperature-time intervals [7], where a deter- 
mination of the thermophysical characteristics is based on two arbitrary points on the tem- 
perature curve. 

In this study will be considered the method of determining the thermophysical proper- 
ties from the solution to the problem of propagation of a momentary thermal pulse through an 
infinitely large triple-layer medium with imperfect contacts between layers. The simplicity 
of realizing the boundary conditions makes it feasible to perform large-scale testing of 
specimens during a relatively short time. It is possible to calculate the thermophysical 
properties on the basis of an arbitrary number of points on the obtained temperature curve, 
which in turn makes it possible to improve the accuracy of the method by processing the 
experimental data in an only slightly more complex manner. 

We consider the following problem. Within a layer of space (0 < x < b) there exists a 
momentary heat source with a power density 

P (t) = Q6 (Olb [W/~3], 

where Q is the energy emitted by the heater over a unit area of its surface; h, thickness of 
the layer which contains this heater; and ~(t), unit-impulse delta function. 

The layer (d < x < d + b) contains a flat resistance thermometer of thickness b. The 
specific heat of the heater and of the thermometer, being much lower than that of the mate- 
rial specimen, will be disregarded. The thermal conductivity of the layers containing the 
heater and the thermometer, respectively, will be denoted as hr. The half-spaces (-~ < x <0) 
and (d + b < x < ~) contain the reference material, whose thermal conductivity and thermal 
diffusivity are ho and ao, respectively. The tested material with the unknown properties 
and a is placed in the layer (b < x < d) between the heater and the thermometer. We will 
also assume that b << d. The functions of the temperature in these layers will be denoted as 
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u(x,  t) at - - o o < x < O ,  

v(x,  t) at b < x < d ,  

w(x,  t) at d + b < x < o o .  

The problem reduces to solving the system of heat-conduction equatiom~ 

with the initial conditions 
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the boundary conditions 

u(x, 0 ) = 0 ,  v(x, 0 ) = 0 ,  w(x, 0 ) = 0 ,  (2) 
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[w(d, t ) - -  v(d,  t)], 

[w (d, t) - -  v (d, t)l 

(3) 

and the condition of boundedness of the temperature at infinity 

u ( - - o o ,  0 = 0 ,  ~(oo, t ) = O .  (4) 

The conditions of coupling between functions u(0, t) and v(0, t) in expressions (3) are 
obtained from the solution to the heat-conduction equation for the layer (0 < x < b), as- 
suming that its thermal conductivity is zero and all the heater energy is released instan- 
taneously at the section x = b/2 only, i.e., at the center of the layer. Analogously, from 
the solution to the heat-conduction equation for the layer (d < x < d + b) are obtained the 
conditions of coupling between functions v(d, t) and w(d, t). 

Applying the Laplace transformation to system (i) with conditions (2) and (3) yields 

U" P U = O, 
~o 

v .  p__p_ v = o ,  (5) 
a 

W " _  P _ _ W = O ,  
ao 

where U, V, and W are the respective transforms of the functions. 

The boundary conditions become 

~oU' (0 )=  -7- [V (0) -- U (0)1 + Q/2, 

~Y' (0) :- ~ -  IV (0) - -  U (0)1 - -  Q/2, 

z~ [w (d) - -  V (d)], ~v' (d) = . ~ -  
(6) 

~T xow' (d) = --b- W (d) - -  V (d)]. 
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The general solution to system (5) can be written as 

U (x, p) = A exp (-- Vp/~aox) + B exp (Vp/aoX), 

V (x, p) = C exp (-- V'p-~x) + D exp (]/'~-~x), (7) 

W (x, p) -- O exp (-- V'p-~ox)+H exp (Vp/aoX). 

Conditions (4) yield A = 0 and H = 0. From solution (7) with conditions (6) we deter- 
mine the constants B, C, D, and G: 

{ Q(n + 2k) _~ Q(n- -  2k)[(m - -n )k - - t on i  1 ~ [ (m- -n )k - -  ran] 2r (8) 
B - _ 2 t ~ + ( , ~ + ~ ) k  2 ~ [ ' ~ +  ('$-~ik]~ J ~=o ~ I ~ + - ( , ~  +,~)kV ' 

O (m + 2k) ~ [(m - -  n) k - -  rnn] 2r 
(9) 

r=0 
D = Q (m + 2k)[mn -- (m -- n) k] V [(m --  n)/e --  toni z~ 

2c~Z[mn q- (m + n) k] 2 ~ d  ~z~ [ran -f- (re+n) k] 2~ ' (10) 
r=O 

G =  Q~(m+2k) kn ~ [(m--n) k--mn] z~ 
a [mn + (m + n) k]2 ~ ~Z~ [mn + (m + n) k] 2~ 

r~O 

Here k = Xr/b [W/re'C] is  the hea t  conductance of the thermal  con tac t  r eg ion ,  

n = / ~ ;  ~ =  e x p ( V ~ d ) ;  ~ = e x p ( V ~ 0 d ) "  
For high va lues  of  p, cor responding  to the time pe r iod  of i n t e r e s t  he re ,  s e r i e s  (8)-  

(ii) converge so fast that already the first term approximates the sum with sufficient ac- 
curacy. Accordingly, only one term of the sums representing the constants B, C, D, and G 
will be retained for insertion into the general solution (7). 

For determining the thermophysica! properties it is necessary to obtain an expression 
for the functions of the temperature within the layer containing the thermometer v(d, t) 
and w(d + b, t). 

We calculate the function V(x, p) by inserting the values of constants C and D into 
the second equality in the solution (7). After several transformations we obtain 

V(x, p ) =  Q exp(- -~l / i )  + Qk exp (--? ]/>) ~_ 
2~ (V~+sk) m~o V~(,~+~k) 

(ii) 

m = Xo ] / -p-~o;  

+ Q F-pexp(--vlfp) + Qk(3q--qo) exp(- -v /p)  Qk2g exp (--v ]/-p) , (12) 
2~ ( ~  + m)~ 2,~o~ ~ ( f ~  + ~k)~ ~o~n ~ /~ (r + ~k)~ 

where ~ = X/I/a; no = Xo/~a0; y = x/lYe; ~ = (2d -- x)/Va; f = ~o + ~; g = ~o -- n; and 
s = f/n~o. An inverse Laplace transformation of expression (12) yields [8] 

v (x, l) ---- Q exp (-- ?2/4 0 Qkg exp (?sk + s2k2t) X 

x erfc [(~/2 l/-O+ sk Ft] + Q [ 121] "q- 2S2~2tF~ Sk 2 (3~]1]o~] 2-~T~O ) ]/-t- _ _  

2gk2FT ] [ sk (2 + 2s2k2t + vsk) 
q~, Va exp (--v2/4t) + Q -- 2~- + 

_~ k (3q - -  %)(2~qo~1 2 1  + sky + 2sZkZt) + kZg (2sktD2~12+ v) _] • 

• exp (vsk + s2kZt) erfc [@/2 ~ 0  + sk VT]. 

We now expand function erfc(z) asymptotically for large values of the argument [9]. 
Retaining the first two terms of the expansion 
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1 gk Ct- 
v (x, f) = Q 2~1--(~ ~1o V~ (? + 2skt) 

2gkt K-{ ] 
+ ~l~loF-~ (? + 2skt) n t exp (--?~/4t)+ 

1 k (~1 - -  3~1o) V-t 4gk 2t g t  
+ Q 2 0 V ~  P ~lZ~]oV~ (~ -6 2skt) + ~]o V~(~+ 2skt) z 

2k (T I --  3~1o) t V-F } 
--  ~12~1o 1/~ (v -]- 2skt) ~ exp (--v2/4t) (13) 

will ensure the required accuracy. 
in the general solution (7) will yield the function W(x, p): 

W (x, p) = Q~ (m @ 2k) kn exp (-- ~pl---aox) 
[ran + (m --  n) k] 2 

or, in the adopted notation, 

lr/(x, p)-- 

Inserting the value of constant G into the third equality 

Qk exp(--btKp) 2Q kz exp(--~Vp) (14) 

n~0 (f~ + sk)2 + ~ f~(pJ~+ sk)2 

Here g = (d/Ira)~. (x--d)~ 1#~o. An inverse Laplace of expression (14) yields 

2QkZg I~T exp (--~t2/4t) 4- Q [ k -~ gk z (2skt -}- ~)] exp (sk~ q- sZk2t)erfc [({t/2l#T > + .sk V-t-]. 

Retaining the first two terms in the asymptotic expansion of the supplementary error 
function yields, after a few transformations, 

2Qk ,#-( [ 2gkt 2t ] (15) 

~1~o V-~ (~t + 2ski) L 1 -- -- j exp (--~2/4t). ~J(X, t ) =  
~qqo (~t + 2skt) i~ + 2skt) 2 

The thermophysical characteristics of the tested material and the thermal conductivity 
of the contact region are found as follows. We select n points on the experimental curve 
and denote the temperatures at these points as ei, i = i, 2, 3, . .., n. We then examine 
the function 

F(a, ~,, k ) = m a x ( w t - - O ~ )  2, (16) 

where w i is the temperature calculated according to expression (15) for the i-th point. 

The problem of determining the ut~nown values of a, X, and k reduces to minimizing the 
function F(a, X, k), its minimum corresponding to triad of values a, %, k closest to the 
true ones. 

The zeroth-order approximation for a and % is obtained from the solution to the heat- 
conduction problem (i) for an ideal thermal contact between the media within the region 
of their interface [i0]. The zeroth-order approximation for k is obtained from the condi- 
tion of contact between the tested specimen and the reference material, with the thermal 
conductivity of the heater material and the thermometer material as well as the thickness 
of both taken into account. 

Some test data on ~he thermal conductivity and the thermal diffusivity of specimens 
certified at the D. I. Mendeleev All-Union Scientific-Research Institute of Metrology are 
given in Table i, based on the initial approximation k = 800 W/m'C. The errors of X and a 
determinations, their absolute values, do not exceed 5-6%. The data in this table indicate 
that the error of a decreases with increasing thickness of the specimen. This can be ex- 
plained by the decreasing effect of thermal resistance in the contact. The error of % in- 
creases with increasing thickness of the sPecimen. This is apparently due to heat dissipa- 
tion through the lateral surface of a specimen, which begins to become significant as the 
dimension d of the specimen increases. The spread of k values based on those tests is at- 
tributable to different conditions at the contact, i.e., different pressures in the contact 
region, different degrees of surface roughness, etc. 

When the ratio of thermal resistance of the specimen to thermal resistance in the con- 
tacts is relatively large (larger than I0), then it is permissible to use the asymptotic 
expansion of expression (15) in powers of ko/k (ko = %/d denoting the thermal conductance 
of the specimen). 
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TABLE i. Experimental Data on the Thermophysica! Properties 
of Fused Quartz and Acrylic Glass 

Item No. i Specimen 

1 i Acrylic glass 
2 
3 Fused quartz 
4 
5 I 

J,mm w~. 
5 , 0 5  10,197 
3,63 0,197 
4,00 / 0,197 
3,50 0,197 
4,99 1,34 

ao ,10  6, 

r n 2 / s e c  

, 0,113 
0,1t3 
0,113 
0,113 
0,83 

22, 
0161 
3,1 
;0.1 

!de~ ~eg J~W~c TM % 
I 970 0~1%0207 ; 51 

550 Io ~m i02% i s,o 
970 q.794 I 1.31 ~--9 1 

1140 0,781 1,33 --0'66:0 
1066 0,789 1,43 

6a, % 

--0,5 
--2,6 
--4,4 
--5,9 
--4,9 

We will now expand the function W(x, p) in expression (14) into a power series with re- 
spect to I/k: 

(--1)'~m,q (1/~/sk) "-= _ ( _  1)mmqo (lrp/sk) '= ] 
m 

m = l  J 

This expression will be rewritten as 

2Q'qexp (--p, ]f~) Q r - -  3q) exp (--btV->) 

v~ (x, p) ,-., p V-> - psk  + 

+-~7.{~2[m(~l--,]o)§ - 
r t ~  1 

- -  ~ [(2m q- 1)0 ] - - % ) q -  2~]](l#~/sk) 2'n+' exp ( - - ~ ( P ) I  ' 
t t /~  1 

/ 

Applying the correspondence theorem to operations on originals and on transforms during dif- 
ferentiation of the original, and then equating the derivative 3mw(x, t)/at TM (m = i, 2, 3, 
...) at t = +0 to zero, we obtain 

-- (sk) 2m+1 dt "~ 2t 1 / ~  " 
~ ? ~  1 

We n e x t  i n t r o d u c e  t h e  d i m e n s i o n l e s s  v a r i a b l e s  Fo = a t / d  2 and Bi  = k / k 0  so  t h a t ,  a f t e r  a 
few transformations, we obtain for x = d 

w(Fo, d ) ~  Qexp( - -1 /4F~  (3~]--~1~176 -}- 
[Zd 1/a  Fo _ 2f  Fo Bi 

(4'q - -  2~1o)(1 - -  2Fo) 'q2 o (5~1 - -  3rlo)(l - -  6Fo) %a ] 
+ 

4fZFoZBi z 8/aFoaBi a q- . . . .  j 

We will now describe the computer procedure for seeking the minimum of function F(a, X, k). 
The program for determining the quantities a, X, and k has been written in the GDR-ALGOL 
language for a model BESM-6 high-speed computer. It includes the standard routines MINIG 
[ii] and DIRECT [12] for seeking the minimum, combined with the method of a trough step. 

We note that the relief of function F(a, X, k) has in many cases a rather intricate 
pattern with steep descents, troughs, and several local minima. Some experience is, there- 
fore, necessary for operating the program and selecting the trough step. 

As an example, in Figs. 1-3 are shown isolines of function F(a, X, k) segments near its 
minimum. These graphs represent the results of test No. 2 (Table I). 

In conclusion, we will note that in this study a series of tests was performed with the 
thermal conductance k of the contact and ko of the specimen comparable in magnitude (i.e., 
with small values of the Biot number). Therefore, this method can be recommended for deter- 
mining the thermophysical properties of high-conductivity materials and allows the use of 
thin specimens. 
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Fig. i Fig. 2 

Fig. i. Behavior of function F(a, X, k) near its minimum 
(~ = 1.15.10 -7 ma/sec); values of function 9 = --log F: i) 
5.90; 2) 5.53; 3) 5.15; 4) 4.78; 5) 4.40; 6) 4.03; 7) 3.65; 
8) 3.28; 9) 2.90; i0) 2.53. k (W/m2'C), X(W/m.C). 

Fig. 2. Behavior of function F(a, X, k) near its minimum 
(k = 600 W/m2.C); values of function ~=--log F: i) 5.88; 
2) 5.31; 3) 4.74; 4) 4.17; 5) 3.60; 6) 3.04; 7) 2.47; 8) 
1.90; 9) 1.33; I0) 0.76. a. 107 m=/sec. 

11oo o,7o /,oo ~3o e. lo ~ 

Fig. 3. Behavior of funct ion F(a, 
X, k) near its minimum (X = 0.2 W/ 
m.C); values of function 9 = --log F: 
i) 5.88; 2) 5.31; 3) 4.75; 4) 4.18; 
5) 3.61; 6) 3.05; 7) 2.48; 8) 1.92; 
9) 1.35; 10) 0.79. 

APPENDIX: DESCRIPTION OF THE PROGRAM FOR DETERMINING THE QUANTITIES a, %, k 

Identifiers: M, number of points on the experimental curve; KP, number of variables of 
the function to be minimized; MIZ, value of the function to be minimized; TM, time to reach 
the maximum temperature; TETAM, maximum temperature on the experimental curve; 

ETO=~o A O = a  o LO=~o TETA[I]=OI 

PI=a~ B = d  T [ I I = t i  Q = Q  

KU, AU, LU are the initial approximations for k, a, and X, respectively; WE, procedure- 
function which realizes expression (15); $2, procedure-function for the function (16) to be 
minimized; MINIG, standard procedure for minimum search by the method of steepest descent; 
MINIF, auxiliary procedure-function for implementing the MINIG procedure; OWRAG, pracedure 
for minimum search in the case of a trough relief of function F(a, %, k), implementing the 
method of the trough step; DIRECT, standard procedure of minimum search by the method of 
steepest descent along coordinates; and EXSTEP, standard procedure for reverting the control 
from computing to deck processing. 
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The program operates as follows. After a read-in of the input data, the variables Q, 
AO, B, and T are normalized so as to avoid an overflow of the arithmetic unit in the com- 
puter. Then from the TETA variables array is selected the largest element, and the initial 
approximations for % and a are found by the ~nethod described elsewhere [i0]. The initial 
approximation for k is stipulated. The zeroth-order approximations come printed out. 

The first approximation for F(a, %, k) is found by the MINIG procedure. The function 
F(a, %, k) is minimized by the OWRAG procedure. A more precise minimization near the global 
minimum is performed according to the DIRECT procedure. The values of the minimized func- 
tion MIZ~ the sought values of a, %, k, the instants of time ti, the values of function 
wi(k, a, %) at time ti, calculated according to expression (15), and the corresponding 
temperatures e i at these points are all printed out. 

NOTATION 

a and ao, thermal diffusivity of the tested material and the reference material, re- 
spectively; d, thickness of the test specimen; k and k , thermal conductance in the contact 
and of the specimen, respectively; t, current time; u, v, w, functions of the temperature; 

and ~o, thermal activity coefficients of the tested material and the reference material, 
respectively; %, %0, %r, thermal conductivity of the tested material, the reference mate- 
rial, and in the contact region, respectively; Fmin , minimum value of function F(a, %, k); 
x, coordinate; ~%, relative error of a % determination; and 6a, relative error of ana determina- 
tion. 
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